The amino acid permeases AAP3 and AAP6 are involved in root-knot nematode parasitism of Arabidopsis.

نویسندگان

  • Heather H Marella
  • Erik Nielsen
  • Daniel P Schachtman
  • Christopher G Taylor
چکیده

The root-knot nematode, Meloidogyne incognita, is an obligate parasite which depends entirely on the host plant for its nutrition. Root-knot nematodes induce the formation of a highly specialized feeding site consisting of several giant cells surrounded by a network of vascular tissues. Nutrients, including amino acids and sugars, are transferred apoplastically from the vascular tissues to the feeding site. Using Arabidopsis thaliana lacking the vascular-expressed amino acid permeases (AAP) AAP3 or AAP6, we demonstrate that disruption of amino acid transport can affect nematode parasitism. Nematode infestation levels are significantly reduced on the aap3 and aap6 mutants. AAP3 and AAP6 act distinctly in the transport of amino acids to the feeding site, as demonstrated by differences in their carrying capacity profiles. Furthermore, analyses of promoter: β-glucuronidase lines show different expression patterns for AAP3 and AAP6 in infected roots. In the aap3-3 mutant, part of the decrease in infestation is connected to a defect in early infection, where juveniles enter but then leave the root. Both aap3-3 and aap6-1 produce fewer females and produce more adult male nematodes. Additionally, detrimental effects are observed in the nematodes harvested from aap3-3 and aap6-1 mutants, including decreased egg hatching and infectivity and lower levels of lipid reserves. The transport of amino acids by AAP3 and AAP6 is important for nematode infection and success of the progeny.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of organic amendment on organic metabolites in root knot nematode (Meloidogyne Incognita) infested spinach

The Nematodes are roundworms that are found in every environment of the earth. While some species are harmful parasites, others play a vital role in nutrient cycle and medical research. Nematode infestation in the fields is poly-specific; however, depending on the agro-climatic conditions, one or two species are dominant over the rest. The present studies attempts to observe and control the roo...

متن کامل

Effect of organic amendment on organic metabolites in root knot nematode (Meloidogyne Incognita) infested spinach

The Nematodes are roundworms that are found in every environment of the earth. While some species are harmful parasites, others play a vital role in nutrient cycle and medical research. Nematode infestation in the fields is poly-specific; however, depending on the agro-climatic conditions, one or two species are dominant over the rest. The present studies attempts to observe and control the roo...

متن کامل

The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism

Root-knot nematodes secrete effectors that manipulate their host plant cells so that the nematode can successfully establish feeding sites and complete its lifecycle. The root-knot nematode feeding structures, their "giant cells," undergo extensive cytoskeletal remodeling. Previous cytological studies have shown the cytoplasmic actin within the feeding sites looks diffuse. In an effort to study...

متن کامل

1982 Engineering durable root-knot nematode resistance in crops by RNAi silencing of a root-knot nematode parasitism gene

Secreted proteins coded by parasitism genes expressed in esophageal gland cells mediate infection and parasitism of plants by root-knot nematodes. An essential parasitism gene, designated as 16D10, encodes a conserved root-knot nematode secretory peptide that stimulates root growth and functions as a ligand for a plant transcription factor. Plants were engineered to silence this parasitism gene...

متن کامل

A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor.

Parasitism genes expressed in the esophageal gland cells of root-knot nematodes encode proteins that are secreted into host root cells to transform the recipient cells into enlarged multinucleate feeding cells called giant-cells. Expression of a root-knot nematode parasitism gene which encodes a novel 13-amino-acid secretory peptide in plant tissues stimulated root growth. Two SCARECROW-like tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant-microbe interactions : MPMI

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2013